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Summary. In this paper, we present new general analytical formulas for matrix
elements of the free-particle Green’s function over arbitrary Cartesian Gaussians
and explicit formulas for Green’s function matrix elements over s, p, d and f Gaus-
sians. One-center matrix elements were obtained by direct integration and two-
center matrix elements by differentiation of the integral formula for s Gaussians
with respect to the position vectors of p,d, and f Gaussians. We also present
a representative set of numerical values of the matrix elements.
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1 Introduction

Use of Gaussian basis sets in electron scattering calculations requires development
of procedures for analytical evaluation of the free-particle Green’s function matrix
elements over Cartesian Gaussian functions. Ostlund derived formulas for the
s-type [1] and p-type [2] Gaussians by direct integration. Levin and coworkers [3]
derived formulas for d- and ftype Gaussians by means of the partial-wave
expansion of the plane-wave function. The purpose of this paper is to show that
simple and compact explicit formulas up to f functions may be obtained without
partial-wave expansion. In their general form, the formulas may be applied to g and
higher Cartesian Gaussians. In this paper, we also report corrections for several
misprints in the published values of matrix elements [3], and list some additional
data which may serve as standards for debugging new computer codes.

2 Theory
As is usual we assume the free-particle Green’s function as
1 eiku|r—"/|
Gg (r, ¥ ky) = ——— ——. 1
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and the normalized Cartesian Gaussian functions as
(o> = Nimalx = A (y = A)(z — A,pre o= A7 @

Since the values of normalization constants for different types of d and f functions
are different, we will derive the formulas for unnormalized Gaussian functions.
Hence, we use the following formula for the Fourier transform of a Gaussian
function

< A | > <n>3/2 il+m+n kA k*/4 ( k ky ) k
ah ky=(Z) ke ([ S Vg H,[—
m o (2\/& Hrmta : 2\/&> <2\/& (2\/&>

©)
where the plane-wave function {k) is also assumed to be unnormalized
lk> — eik-r. (4)
For the energy E = ka/2 the matrix element of the Green’s function is given by
' 1 Ll B e B
A + B _ : Imn I'm'n
| G5 (D) B> = sl | ot g, 5

We treat the one-center and two-center matrix elements separately because the
former are derived by direct integration whereas the latter are derived by successive
differentiation of the integral formula for s Gaussians with respect to the position
vectors of p, d, and f Gaussians.

2.1 One-center matrix elements

By substituting for the Fourier transforms, the one-center matrix elements may be
expressed as

8(_1)l’+m’+n‘il+m+n+l’+m’+n

A A _
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where the integrals I, are defined as
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and
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Evaluation of these integrals through f Gaussians leads to the following formula:

4
Imnl’m'n’
Ilmnl’m’n’ = Z Azr;n e J2j- (9)
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Table 1. Parameters A'z"l’."""'"" for one-center matrix elements through f Gaussians. Parameters P; are
summarized in Table 2. The sp, pd, sf, and df matrix elements are identically equal to zero by symmetry

Matrix element A, As Ag As
sS 47 0 0 0
47

rp 0 P, 0 0
3./af
4

sd —8nP, T p, 0 0
3

8n(x + ) 4r
dd 16mP. -——P —P. 0
et f 2 Suf >
. 8n 4m
pf 0 -——P, - 0

——F—P.
Jaf 5./ af? ?
487 _ 24n(x + f) P 4n

P, 3 P,
\/&E 5 /oz3ﬁ3 7 zx3ﬁ3

Table 2. Parameters P, through f Gaussians for one-center matrix elements

Matrix element® P, P, P, P,
XX 0 1 0 0
§—xx 1 1 0 0
XX—XX 1 1 1 0
XxX—yy 1 1 1/3 0
Xy—xy 0 0 1/3 0
X—XXX 0 1 1 0
X=Xyy 0 1/3 1/3 0
XXX~XXX 0 1 1 1
XXX—XYyy 0 1/3 13 1/5
XXY—XXY (V] 1/9 1/9 1/5
Xxy-yzz 0 1/9 19 1/15
Xyz—xyz 0 0 0 1/15

* Only those types of matrix elements are listed for which the P; parameters are
nonzero

Imnl'm’n’

In this summation J,; are integrals evaluated in Appendix A and A4;; are
parameters which are summarized in Tables 1 and 2.

The integrals I}, ;- can also be expressed in a general form if we realize that
a product of Hermite polynomials can always be written as a power series

() () () () () (25)
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where constants Qpy (2, f) can be easily obtained. Using this expression, Eq. (7)
can be rewritten as

1+l m+m’ nt+tn

Ilmnl’m'n’ = Z Z Z QLMNKLMN' (11)

L=1 M=1N=1
Here K,y are integrals given by the formula

jwmﬂmewgﬂuk "

K =1i
e k2 — k2 + e
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which can be evaluated as shown in Appendix B.

2.2 Two-center matrix elements

For the two-center integrals over Gaussians with nonzero Lm,n, I, m',n' we
employed a method which has been used in the electronic structure theory since the
early days of ab initio calculations [8]. This method consists of substituting the
following expressions for the unnormalized p, d, and f functions

Ipa> = —l‘—a‘c““r‘;,
20 04,
o> = Z%af—;[ue‘”i + 5“539,“0”},
iﬁw>=§%aaégaaewﬁ+5mz%é% }
+5M—12-5i—e‘“’ +5uvZ;—25%:e—ar§, (13)

In these formulas we use r = |r — A|* and Greek subscripts for x, y, z. To obtain
a formula for two-center Green’s function matrix elements we need to express these
Gaussian functions in a general operator form. For this purpose we define the
operator as

4 al +m+n
= . 14
A 0AL0A™ A" (14)

Then the p, d, and f functions may be rewritten as

1
|p,1>: ,m,,ls>, l+m+n=1,

1 1
|y = A+ Sau==Ab0o |18, I+m+n=2,
42 20

1 1 0 1 0
|flﬁl"> = [8 lmn + 51#4 aA AE:OO 51‘/ 4 aA Agoo

1 0
+5M4 YN Agoo]|s>, I+m+n=3, (15)
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where

0
04,

0
0A,

0

7 4300 = 4501 (16)

A A A A
AOO() AIOO’ AOOO AOIO’

Formulas for g and higher functions may be obtained by means of the following
recursive expression:

1 1
'af+l,m,n> 2 aA I lmn> + !al 1mn> (17)

Since the operators 4;% (Eq. 14) do not depend on r and ¥/, respectively, the order
of differentiation with respect to Cartesian Gaussian coordinates and integration
over r and #, respectively, can be interchanged. Calculation of Green s function
matrix elements then reduces to the evaluation of expressions A7 4% . G, where
the G, matrix element is defined as

(a'1Gg | B> = Gis, (18)

and its evaluation is described in Appendix C. As an example we present the matrix
element for f,,, and f,,, functions

(t5001 Ga |Bays> = Gy + Gy + G5 + Gy, 19)

imn

where G, G,, G5, and G, becomes

Gl — A;OOA(?OB G G2 — 3AZ’:‘OO 001 G

64> T 3203p%
Gy = 3_4_;4_0@ o Gg= % . (20)
320283 1602 B
Since
Ay A Gos = (=1 74 A0 A G @1

we may drop the superscripts A and B and assume only the differentiation with
respect to A,

AL = Ay (22)
Differentiation of G, gives
AlmnAlmn Z PKGg)s (23)
J=1
where
K=Il+m+n+!l+m+n, (24)

and GY is the jth derivative of G, with respect to the distance C = 4B,

' Gy
oc’

Gy = (25)
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Evaluation of Gis) terms is described in Appendix C. For each J and K, the
coefficients P¥ 7 in Eq. (23) may be expressed as

1 K-J I )
PY¥= <_E) y (—1)'Rf’i9;(cll, Ci,s -, Ca) I = K/2 for K even
i=0
= (K —1)/2 for K odd. (26)

By C;,,C,,,..., C,, we denote derivatives of C with respect to coordinates
AllaAlza""Aix

C, = 0C/0A;. 27
The symbol Z,(C;,, C,,, ..., C,,) means all permutations of C; , C;,, ..., C;, with
respect to indices 4y, 45, ..., Ag with the first i pairs C; C;,, C;,C,,, ..., C;,,  C;,,
replaced by Kronecker delta functions. For example, for K = 4 we have
Zo(C,,,Cs,, Ca,, Ca,) = C,3,C;,C,,Cy,.
2.(C;,, Ca,, Ca,, Ci,) = P(61,4,, Cay, Ci,)
P,(Cy,, Ca,, Ca,, Ci) = P(03,4,5 02,2,) 28)
and for K=5
Po(Cy,,Ca,, Ca,, Cy,, Ci) = C,,Cy,C;,.C;,Cy
P21(C;,, Cy,, Ca,, Co,, Ci ) = P (64,2, Cays Cay, Ca,)
P2(Cs,,Cs,, Ca,yy Cayy i) = P05,2, 03,2, Cag) 29)

In Eqgs. (28) and (29) 2 stands for permutations of indices 1, 45, ..., 4. For
example,
P(02,1,C2,C1,) = 01,2,Ca,Ca, + 62,2,C1,Cs, + 02,4,C1,Ca,
+6}'213C11C,14+61 C11C13+51314C1‘C12. (30)

244

The general formulas for Rf . coefficients are the following:

-J- i . .
K (] J+i<K,
K== J—z)' EI [( ) (2)] for i 1<k,

Rf;=1 forJ+i=K,2i—1<K.

(1)

H the 1nd1ces J and i are outside the range given in Eq. (31), then RK =0. The
values for R¥ 7.1 coefficients needed for Green’s functlon matrix elements through
g Gaussians are listed in Table 3. The coefficients R ; for i > 1 may be obtained
also by means of the recursive formula

J+i<K
K >
Ri =Ry, for 2 < K. (32)
The explicit expressions for P} coefficients needed for Green’s function matrix
elements through d Gaussians are presented in Table 4.
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Table 3. Coefficients R; for K <8 and J <K

K K K K K K K K
X Rl,O Rz,o Ra,o R4,o Rs,o Re,o R-/,o Rs,o
1 l

2 1 1

3 3 3 1

4 15 15 6 1

5 105 105 45 10 1

6 945 945 420 105 15 1 :

7 10395 10395 4725 1260 210 21 1

8 135135 135135 62370 17325 3150 378 28 1

3 Results and discussion

We tested the new formulas for Green’s function matrix elements against the
numerical data published by Levin and coworkers [3]. We also tested them by
calculations in which we integrated the angular part of Eq. (5) analytically and
the resulting expression was integrated numerically over k. Having calculated
these integrals in two different ways, we feel confident that the data by Levin
et al. [3] contains a few misprints (wrong signs of some integrals). We consider it
expedient to present the corrected values, because they belong to the only data
set we have found in the literature that was suitable for checking our results.
The matrix elements 3-9, 3-8, and 1-6 from Table IV of Ref. [3] should
read 0.334011x 1072 +i 0.52021 x 107%, —0.182042 —i 0.19020x 10™!, and
—0.255808 x 1076 — 1 0.73535 x 107°, and the position vector of center 9 should
be (0,0, —R) for R = —1.034 a.u.

The formulas we derived are about as complex as those by Levin and
coworkers [3]. While they listed explicit formulas only for axially symmetric
molecules, we present explicit formulas for a general polyatomic molecule that may
be used directly for computer coding. For the purpose of checking new computer
codes we present in Tables 5 and 6 a representative set of numerical matrix
elements for both the one-center and two-center integrals for a set of s, p, d, and
J-type Gaussian functions.

Appendix
A. Evaluation of integrals J,;

In this Appendix we present formulas for integrals of the following type

| © ije—azkz q
J,. =1 —  dk. Al
2 JPSL 2 i ok (A1)

For j = 0 the integral may be evaluated [4] by means of the complex error function
[5] using the algorithm of Gautschi [6],

T,
Jo = —ﬁ; iw(akgy). (A.2)
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Table 5. Two sets of Gaussian functions used for numerical testing of Green’s function
matrix elements®®

Type of Gaussian Set A Set B
Number Exponent Number Exponent

s 14 50 1B 4.5
D 24 30 2B 25
A 34 1.5 3B 1.0
dyy 44 15 4B 10
S 54 10 5B 0.5
Srexy 64 1.0 6B 0.5
Jaye 74 1.0 7B 0.5

* Gaussians of the set A are centered at ( —0.2, —0.4, —0.1) a.u. and those of the set B at
(1.0,0.6, 1.6) a.u.
bk =0.85215a.u.

Using a decomposition,

k? (kg + ey icl .
— = — — kZ(J‘m-l) k2 som i > 1, A3
Py [P (ko +ie)" | J (A3
a general formula for integrals J,;
Jy=kY [ Z Sy & ] i=1, (A.4)
can be easily derived in which I,, are Gaussian-type integrals:
I 2m — 1!
Izm:J ke 4K dk = \/"zm+1 —, m>0. (A.5)
B. Evaluation of integrals Ky
The integral Ky can be written in the form
Kimnv =Ry TounJr+m+n+2 (B.1)
where
2n
Ry = f _ (cos @)* (sin )™ dg, (B2)
0
Ty = f (sin M+ 1 (cos ¥ d 9, (B.3)
0

and Jp 4 p+n+2 18 evaluated in Appendix A for L + M + N + 2 even. Integrals
(B.2) and (B.3) may be evaluated by recursive formulas (cf. paragraph 2.51-2.52 in
[7]). For L+ M + N + 2 odd the integral K,y is zero because the product
Riae Ty has a zero value.
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Table 6. Numerical values of Green’s function matrix elements for Gaussians listed in Table §

Gaussians One-center matrix elements Gaussians Two-center matrix elements
14-14 —0.17998D + 00 —095753D - 01 14-1B 0.18798D — 01 —0.44894D - 01
14-2A4 0.00000D 4 00 0.00000D +00 1A4-2B 0.14890D - 01 0.17542D — 01
14-3A4 —0.12006D + 00 —0.26073D +00 14-3B 0.57904D — 01 —0.12092D + 00
14-4A4 0.00000D + 00 0.00000D + 00 14-4B —~0.29636D — 01 —0.81446D — 02
14-54 0.00000D + 00 0.00000D + 00 1A4-5B 0.53631D — 01 0.12827D + 00
14-6A4 0.00000D + 00 0.00000D + 00 14-6B 0.52813D — 01 0.81328D — 01
14-74 0.00000D + 00 0.00000D +00 1A4-7B 0.71775D - 01 0.60877D — 02
24-24 —0.14531D + 00 -0.18232D —- 01 2A4-2B 0.89301D — 03 —0.92184D — 02
2A-3A4 0.00000D + 00 0.00000D +00 2A4-3B —~0.97045D — 02 —0.36164D — 01
24-4A4 0.00000D + 00 0.00000D +00 24-4B 0.19666D — 02 0.47151D — 02
24-34 —0.14769D + 0Q -0.13501D +00 24-5B —0.12919D - 01 —0.68011D — 01
2A-6A4 0.00000D + 00 0.00000D +00 24-6B —0.13385D — 02 0.10500D - 01
24-7A 0.00000D + 00 0.00000D +00 24-7B —0.11663D — 01 —0.36860D — 02
3A-34 —0.26981D + 00 —0.63338D + 00 34-3B 0.17096D + 00 —0.29186D + 00
3A-4A4 0.00000D + 00 0.00000D + 00 3A4-4B —0.42973D — 01 —0.19049D — 01
3A-5A 0.00000D + 00 0.00000D + 00 3A4-5B 0.66185D — 01 0.28483D + 00
34-64 0.00000D + 00 0.00000D 400 34-6B 0.98382D — 01 0.20489D + 00
34-74 0.00000D + 00 0.00000D + 00 3A4-7B 0.95085D — 01 0.14637D - 01
4444 —0.19601D -+ 00 —0.13645D — 01 4A4-4B —0.61800D — 02 —0.76198D — 02
44-5A 0.00000D + 00 0.00000D + 00 4A4-5B —0.34555D — 01 —0.23824D — 01
44-6A 0.00000D + 00 0.00000D + 00 4A4-6B —0.18215D — 02 —0.16832D — 01
44-7A 0.00000D + 00 0.00000D + 00 4A4-7B 0.15837D - 01 0.61563D — 02
5A-54 —-0.60989D + 00 —0.68025D + 00 54-5B —0.15283D — 01 —0.34206D + 00
5A-6A 0.00000D + 00 0.00000D + 00 SA-6B 0.24617D — 01 0.54280D — 01
SA-T7A 0.00000D + 00 0.00000D +00 SA-7B -0.77152D — 01 —0.19204D — 01
6A-6A —0.43505D + 00 —0.38269D + 00 64-6B —0.24533D - 01 —0.21141D + 00
64-7A 0.00000D + 00 0.00000D +00 6A4-7B -0.50700D — 01 —0.16308D — 01
TA-TA —0.21650D + 00 -0.10747D - 01 7A4-7B ~0.19990D — 02 —0.51694D — 02

C. Evaluation of G terms
Here, we introduce the following three auxiliary functions:
FOC) = (—C%/4a?) (e8!
8C(apy P &
© 1C iC 5
w0 w(ako+2a)+W<ako 2a)' (C2)
©) iC 1C

W_ (C) W(ako + za) w (ako 2a>, (C3)

where a is defined by Eq. (8). The fundamental integral for two s-type Gaussian is
then obtained [1] as

A GF B2 = Gy = G = fOCYyW?(0).

The derivatives of this integral with respect to C are obtained from the general
formula

cOC) = ¥ (

q=0

J
q

)f‘"’“”(C)W‘-q’(C)

(C4)

(C.5)
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where f¥~9(C) and W'?(C) are derivatives of @ (C)and W‘®(C) with respect to
C, respectively. The first derivatives of f, W, , and W_ are given by the following

expressions:
S = =fOC)FO(0), (C.6)
wP(C) = C W‘O)(C) ikow©(C), (C.7)
wO(C) = C W‘°’(C) koW Q(C) — 2 , (C.8)
o/
where
o C
F¢ ’(C) C 7 (C.9)

The higher derivatives for n > 2 are obtained from the recursive expressions

£0(0) = Z( )f“* D) F9(0), (10
wP(C) = (n—1)—W‘"‘2’(C) iko W<"-1>(C)+ ¢ W‘"“’(C) (C.11)

WOC) = (1 — 1) =5 WE2(C) - ko WE™(C) + 5 W""”(C) (C12)
2a*

where
FO(C) = ! 12, (C.13)
c? 2
and
FO(C) = (=1)y'nIC~ 0+ D), (C.14)
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